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Application of Complex Ray Theory in EM Scattering and RCS Analysis

Ruan. Yingzheng (University of Electronic Science and Technology of China.
Chengdu)
{Manuscript received in November, 1987, and revised in October, 1988. This

topic was sponsored by the National Bducational Fourdaticn.)

Apervact . ~ The compiex ray theory provides a simple and useful aporoach
for the analysis of the propagation and scattering of HF EM waves in
various complicated enviromments. This paper deals with complex ray fields
in free space, reflection and refraction at a single interface, multiple
reflections and transmission through a layered medium, total reflection and
critical reflection at a planar interface, diffraction at an edge, complex
ray expansion and superposition. as well as RCS calculation by complex ray
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I. Complex Ray in Free Space!1-5]

Complex ray theory is a theory developed in the 70's to obtain an
approximation solution to the high frequency wave field problems. In the
80's. due to the rapid progress in the computer technology, the theory of
complex ray theory has received wide application in the electromagnetic-
wave related fields such as laser, optical fiber, antenna, and microwave
and the elastic wave fields such as water sound and earthquake wave. The
purpose of this paper is to discuss the application of complex ray theory
in the study of high frequency electromagnetic scattering ard amalysis of
radar cross section.

According to analytical expansion principle of complex function, if the

macnitude of the imaginary part of the coordinatc of the waver sowuce is




given. the complex source point with compiex coordinate can be obtained.
These rays propagating in the complex space from the complex source and are
called the complex rays. Following the traditional ray theory and methods,
the trace of the complex rays can be followed arnd the ray field can be
calculated. ’
In order to simplify the problea, the discussion in this paper was based
on a two—dimensional structure (a/aulr:‘!:éif Figire 4 shows the free space. A
wave vector b was defined at the source of the polarized linear electrical
current S(yg,25) along the x direction. The parameter b was called the wave
width parameter and the directional angle ap was called the wave
directional angle of the vector b (see figure 1). The coordimate of the

complex source was defined as (V5. Zg)

Je=: % jbcosa,, £, =z,+jbelas, (1)
Using the cylindrical Bogarin function for expansion, the field expression
at the observation point P(y,z) of the two-dimensional complex source
(ignoring the time factor exp(—jwt)) is

LTSS T Y
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where the complex distance is

Fev (G- 0+ =10, Re(H)>0 ' 3)

In the real space, the plane that passes through 8 point ard is
perpendicular to the vector b is defined as the caliber plans of the
complex source (see figure 1). On this caliber plane, the complex source
point field has the uniform phase distribution and the Gaussian-type

amplitude distribution and i1ts remote radiation field is also a Gaussian




Figure i: Two—dimensional complex source point and its caliber field
distribution

key: 1 — caliber circle
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type fixed—directional radiation wave. Therefore, it is appropriate to use
the complex source point field to simulate the concentrated waves such as
the mono—pulse laser wave or the radar antenna major wave front. Based on
the conclusion of the real-space ray optics and after simple analysis and
expansion, the transmission and scattering of the wave field can be solved.
Since the physical optical integration or the plane wave spectrum
integration of the caliber field is avoided. the numerical process was made
even simpler.

In this paper. we will briefly introduce the various methods of the
complex ray theory. including the complex ray tracing method. the near—axis
approximation method, the agglomeration ray method, the complex ray
diffraction method. the complex ray expansion method, and the application
of these methods in the calculation of the scattering field ard analysis of

che radar cross section.

I1. Reflection and Refraction of Complex Rays[6'7]

Considering the two—-dimensional random cwrved surface f(y,z)=0 shown in
figure 2. for the complex source S defined in equation (1) and the
observation point P. a complex ray which passes through a point A on the
curved surface and reaches point P can be obtained through iteration

process. This ray should satisfy the complex space Feima principle with the

complex light distance as the limit value

al@+ 1,8 .
L€ 4* H_ao (4)

where L and I, are the complex distances for the incident and the
reflected paths and a is the complex reflected angle (see figure 2).

Therefore. the field at point F can be written as




Figure z: Refiection of complex ray

kev: Z — curved interface
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where B(8) and D(8) are the complex reflection and complex diffusion
functions. These functions can be obtained by substituting the incident
angle 8 in the real space with the complex incident angle 8. The method
which uses the iteration technique to trace the complex ray parameter (such
as the complex reflected angle @) is called the complex ray trac;‘ng method.
Obviously. tremendous computer time is required in the tracing process.

In order to simplify the numerical process, the near-axis approximation
can be used.[(6.7] 1t only requires the tracing of the real trace along the
wave axial line, then the complex ray field E, at the axial observation
point P, can be calculated approximately and then the complex ray field at
the near—axis observation point P can be obtained through the micro—
disturbance correction of complex phase and complex amplitude

ﬁ:g.;""n". (6)

where

- "“"R(o');;(oi) 1R i(LiosLao~10)
vV j8xki(L,g* Lyy~ f.)'

.:
(7}

The § in equation (6) denctes the complex phase correction and ¥ and Vp
are the corrections for the reflection and diffusion functions. They are
all functions of the near—axis distance d and can be expanded by Taylor's
series. (In Taylor's series expansion, only the first term should be
considered for approximation calculation. [(6,7])

For the complex rays that penetrate through the interface and into

another medium, the complex expansion should be based on the Snare's law
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Fiquwe 3: Near—-axic approxilmation of complex rays
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and the results of the refraction of complex rays should be similar to

thrce of the reflection of complex ravs.

III. Continuous Refraction and Muitiple Reflection of Complex Rays[e’lll

In the lavered homogeneous medium shown in figure 4, the complex rays
can reach the observation point after multiple reflections and refractions.
Therefore. the total field at point P should be the summation of all the

sikble complex rav fields

E- XK. (8)
where EM denotes the complex ray field which reaches point P after M times
~f reflestione between the two lavers (see figure 4). The calculation can
be proceeded with either complex ray tracing method or the near-axis

approximation method {2

= -—-::::—- Do glte?
Eum = imnd, TRuDue’ " (9)
where T-Ei?z 1s the coefficient of refraction of this double—refraction.

o
R.= M7 1= the total coefficient of reflection after M times of

reflections. Dy= ':li' d. 1s the total diffusion coefficient, and ¥.= L.+ -.?:l:' L.+ L,
1= the total complex light distance. They can all be soclved from the
complex ray paths.[8-10]
In order to simplify the summation process of the infinite series in
equation (8), the residual terms from the M-th term can be treated
together. If the thickness of these layers is uniform or if the incident
ray is near the normal vector of the curved surface, then the residual
terms can be expressed, after Fourier transformation and integration

approximation calcuiation, as(il]







Eo= 2 Eu= - b= RaBae' 005 (10)
Comparison of equations (8) and (10) shows that the summation of these
residual terms can be regarded as the contribution from the M-th complex
ray. It would only require to replace the transmission coefficient T in
equation (8) by the transmission coefficient of the agglomeration of the
rays T.. Therefore. equation (8) can be re-written as the mixed-field

structure of the ordinary rays and the agglomeration rays

E=3 Eu+Ee (11)
The numerical results show that a satisfactory scattering field resuit,
from a engineering standpoint, can be obtained with M=0 (no ordinary rays,
only the agglomeration rays) or M=1 (one ordinary ray, and the

agglomeration rays).

IV. Total Reflection and Critical Reflection of Complex Rays(12-14]

Whien the complex ray field with Gaussian wave front is incident from a
optically less dense medium to an optically more dense medium and if on the
interface (see figure 5, g,>¢), the incident angle 6 is less than the total
reflection critical angle §.=sin='v&/, ,, then there exists only the
geometrical optical reflection field fg which is the contribution from the
complex ray field to the independent saddle point and is expressed in teﬁ:s

of the integration of the plane wave spectrum fs

E,=F =- (1) 3, o
o~E VTt ke o

where
B, 2/ (y=F 00+ (507 ,Re(5 )30 as)
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Firre % Toral reflection ard lateral waves of complex rays
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When the incident angle is greater than the critical angle, the total
reflection field of the complex ray should include both the contributions
to the independent saddle point Eg and to the independent supporting point
€5[12714] from the geometrical optical field fg and the complex lateral
wave field fﬁ: namely

E=E,+E,=E.+E, (14)

where

. = Wi,

E,=E.*— sz “'et

el tt 1l Tretsln)

Ghalo™ (15)

where L}, 1>. and L3 denote the transmission paths of the lateral waves as
shown in fiqure 5. Obviously, when 8->8.. 1p—>0 and equation (15) gives the
quantitative results of the spreading field and there exists a transition
region of the complex ray reflection field. In order to make the
singularity of the transition field smooth. a uniform equation which
includes the transitional function should be used. In other words, the
asvmptotic contribution when the saddle point is close to the supporting

point should be expressed as(12-14]

E-E;+E, (16)
where Eng is given by eguation (12) with ﬁ(i)ul. ﬁ% is the field of the

transitional region

[ 1
E-- oL

et teancd-0, relrre?y

sinf cos'@. (- i2k,8,7)%* .Dl/l(;) 17
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where

sin (6. -8 (18)

£= 8in28.

- 1 j sind
r=--§( O::g, * —in'e. ) (19)

-

eIV T g (20)
where Dj,2(%X) is the 1/2 order parabolic column function of the complex
parameter ¥. The range of the transitional region is determined by the
magnitude of the complex parameter. Therefore, the parameter % can be
defined as the "numerical distance" of x and the mumerical results show
that x=2 1is a criterion for the judgement:[12'13] when x>2 then the general
equation (14) can be used and when x<2 then the uniform equation (16)
should be used.

Besides the total reflection transitional region, singularities of the
complex ray field also exist in the reflection interface, the shadow
interface. the focus line. and the focus point regions. When this is the
case, an appropriate special function should be used for the smoothing—
calibration of the transitional function propagating field as described

above.

V. Diffraction of Complex Rays[15]

Diffraction of complex rays occurs at the edge, tip, or smooth convex
surfaces of the structure. Figure 6 shows a Gaussian wave incident upon an
ideally conducting half-plane structure. If the complex source point field
is used to express the Gaussian wave and if the extension of the

applicability of the theoretical equations of geometrical diffraction of

13




Figure ©: Edge diffraction of complex rays

key: 1 - metallic half plane
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linear source to the complex space is made, then the complex ray
diffraction field can be obtained.

Theo

-~ 4
i?a ”l?:£7(0p 5})‘1;7:;’

= -—=“=:L'—~ 0(,.0 )
Trann 7 D@ et 1)

where 8, is the complex incident angle at the edge of the half plane, 8 is
the diffraction angle at the observation point, and'b(e,é:,) is the complex

diffraction coefficient

-~ l
D.8y = - 7’—2;?

Vi-sind Vi-8sind,
sinf, - sind @

Obviously. if the observation point is located within the transitional
region of the reflection interface or the shadow interface (§O—>€J) , then
the above equation loses its applicability. When this is the case, then in
the wave spectrum integration formula, the saddle point is very close to
the supporting point and the simple geometrical diffraction theory can not
be applied and the uniform diffraction theory and related equations should
be used for the analysis of the complex space.

The complex ray theory has been used in the analysis of various
diffraction problems involving waves such as the curved-edge diffraction of

the antenna of reflectors.t's?

VI. Expansion of Complex Rays arxd Superposition of Complex Source
Points(16-19] ’

Based on the principles of complex ray thecry, we can extend the -
wilkings-Feiner's principle and its Gilhoff mathematical expression to the

complex space([16,17] and develop a new wave expansion method.

15




Considering the two—dimensional structure shown in figure 7 and assuming
z=z' denotes the Wilkings plane, then the wave source distribution function
on this plane f(y') is

I(") = A(,I).ll.‘"' b ,

-0y <w ) {23)
The field at observation point P can be expre&ed by the Gilhoff equation

if the integration expression of the souwrce distribution is known

E=-L[" nransohey (24)

where

P (y=-y' )+ (x-s")
(25)

Obviously. f(y') is the weighted function of the source distribution. After
Fourier transformation, equation (24) can be expressed in terms of the
integration of plane wave spectrum

Ex ] AT (26)
where F(n) is the plane wave spectrum function corresponding to the field
distribution f(y').

If the Wilkings plane is extended to the complex space or if the sub—
wave source is extended to the complex Wilkings source, then from (24) one
can obtain

E«-Lf" mrab¥orey
T e+ o oo (27
where p is given by equation (3), W(y') denotes the weighted function of
the superposition of complex source fields (sometimes called the expansion

coefficient of complex ray). Since complex source field is a Gaussian-type

16




Figure 7: Expansion of complex rav

key: 1 - Wilkings plane
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wave field with fixed direction and the energy is concentrated around the
axis of the wave front, the integration limits in equation (27) can be
reduced from (—oo0. 0o0) to a smaller range (y;'.y,'). Also the discrete
complex source field can be used to replace the continuous integration in
equation (27) and. therefore, simplify the numerical process. Furthermore,
from the complex expansion of the sub-wave sources, the characteristics of
the field transitional region can be changed, {12,13] and the solution of
the transitional field region can be accomplished through the choice of
appropriate parameters and the direct application of the superposition of
complex source fields and the singularities of the field can be made smooth
willout the introduction of complicated transitional functions. (18]

In order to apply the complex ray expansion equation (27), the weighted
function W(y‘) must first be solved and then the appropriate free parameter
for expansion should be chosen. These parameters are the ones such as
Wilkings plane position z', modulus and direction of wave vector b,
expansion range (y1',y2'). discrete source distance A4y', and computer
threshcld value a,. There have been detailed discussion on the complex ray
expansion of cylindrical waves, (17.19] and the results have been applied to
the reflection at plane interfaces. (18]

When b->0, the complex source field transforms to the real source field,
and the expansion of complex rays transforms to the general Wilkings
principle, when b->00, the complex source field transforms to the plane
wave radiation and the integration of complex source field transforms $o
the integration of plane wave spectrum. Hence, it can be shown that the

expansion of complex source points is a more general farm of wawve field

expansion than the source distribution integration and plane wave spectrum




integration. The latter two cases can be viewed as the special cases of the

first case.

7. Complex Ray Analysis of Radar Cross Section(20-22]

Based on the theoretical definition of target radar cross section (RCS)

. E,|?
o=lim4xn® {'E"}T | (28)

one can see that the calculation of the radar cross section can be
regarded as the calculation of the scattering wave amplitude at the receipt
point IEg! 1f the incident wave amplitude IEj} is given. Therefore, in
principle, all the methods used to analyze scattering of electromagnetic
field can be used in the calculation of radar cross section. Since the
Gaussian wave of the complex source is a very good simulation of the major
wave packet of the radar antenna. the complex ray theory can be used to
obtain the scattering field at the target and the single—station or double-
station radar cross sections.

Figqure 8 shows the calculational results of the cross section of an
intermediate medium single—station radar cross section. (20] Except for the
complex ray reflection and refraction on the surface of the medium,
diffraction occurs at the edge of the rounded plate and the contribution
from the diffraction should be included in the calculation if the diameter
of the rounded plate is not large. In figure 8, the solid line is the
integration results based on physical optics and dotted line is the
calculational results based on complex ray theory. The distance of the
observation point is taken as R=1012A. From this figure, we can see that

when the incident angle is less than 50°, within the range of the major

19
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petal and the near petal. the difference in the results based on these two
methods is less than 3db.

For the large-diameter concave cavity structure such as the gas inlet
and outlet duct, if the radar cross section is calculated based on the
traditional geometrical optics methods, then it is required to form a set
of incident rays on the diameter surface and the distance between these
rays should be less than 0.2\. Obviously, a lot of computer time would be
necessary to analyze the reflection of a few tens even hundreds of
geometrical rays. If the analysis is comducted in the guided-wave fashion.
then since the dimension of the wave guide is far greater than that of the
radar waves. the expansion and analysis of a few hundreds high order modes
is still not easy. If the complex ray theory is used 1n expansion and near-
axis approximation is used in simplification of the problem, then tracing
of a few reflection paths of the complex rays will be sufficient to
establish the field distribution on the lip surface of gas inlet duct or
the field strenath at the reception point can be determined and then the
radar cross section of the target can be calculated. The RCS analytical
results of a curved gas inlet duct has been completed.[21] The results
based on complex ray expansion were compared with those based on other
methods.

The radar cross section of antenna and antenna cap can also be
calculated by the complex ray theory.[22] The structures of antenna ard

antenna cap with low RCS can be optimized in this way.

VIII. Concluding Remarks
The complex ray theory has been proved to be an efficient way of

analysis of high frequency field scattering. This paper discusses the

21




application of this theory under the conditions of uniform and layered
medium. These are just some simple conditions. However, its application is
not limited by these conditions. In the nomuniform, dissipated, or
directionally-conducting media, the complex ray theory still has very
important applications. Using the complex ray theory, not only can the
radar cross sections of the metallic parts such as the body arnd wings of
the vehicle be calculated. the reflection and transmission of the radar cap
ard cabin hoods can alsc be analyzed. Not only can the scattering

ontribution due to the key scattering parts such as antenna and gas inlet
duct be calculated, but also the effect of RCS reduction after application
of wave—absorbing materials can be analyzed. So far, this topic has been
under intensive study worldwide and. in some areas, significant

arcomplishmerts have been made.
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